skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Woltz, Christina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The first compilations of Proterozoic eukaryote diversity, published in the 1980s showed a dramatic peak in the Tonian Period (1000–720 Ma), interpreted as the initial radiation of eukaryotes in the marine realm. Over the decades, new discoveries filled in the older part of the record and the peak diminished, but the idea of a Tonian radiation of eukaryotes has remained strong, and is now widely accepted as fact. We present a new diversity compilation based on 181 species and 713 species occurrences from 145 formations ranging in age from 1890 Ma to 720 Ma and find a significant increase in diversity in the Tonian. However, we also find that the number of eukaryotic species through time is highly correlated with the number of formations in our dataset (i.e. eukaryote-bearing formations) through time. This correlation is robust to interpretations of eukaryote affinity, bin size, and bin boundaries. We also find that within-assemblage diversity—a measure thought to circumvent sampling bias—is related to the number of eukaryote-bearing formations through time. Biomarkers show a similar pattern to body fossils, where the rise of eukaryotic biosignatures correlates with increased sampling. We find no evidence that the proportion of eukaryote-bearing versus all fossiliferous formations changed through the Proterozoic, as might be expected if the correlation reflected an increase in eukaryote diversity driving an increase in the number of eukaryote-bearing formations. Although the correlation could reflect a common cause such as changes in sea level driving both diversification and an increase in sedimentary rock volume, we favor the explanation that the pattern of early eukaryote diversity is driven by variations in paleontological sampling. 
    more » « less
    Free, publicly-accessible full text available March 31, 2026